![高等应用数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/247/26179247/b_26179247.jpg)
上QQ阅读APP看书,第一时间看更新
2.2.2 反函数的求导法则
已经解决了对数函数和三角函数的求导公式,下面需要解决它们的反函数指数函数和反三角函数的求导,为此给出如下定理.
定理2 如果函数x=φ(y)在区间I内单调、可导,且φ(y)'≠0,则其反函数y=f(x)在相应区间内也可导,且
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00059008.jpg?sign=1739341336-2YHZnyhJokdFdzPPg0laVXWrzJc7iRKT-0-936074d5e6cfdd0813d82791738e4b3f)
证明 由于互为反函数x=φ(y)与y=f(x)在各自相应的区间内单调性是一致的,所以,当Δx≠0时,Δy≠0,则
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00059009.jpg?sign=1739341336-8NVRlV10YubI43claIHtbUoDHmitMidj-0-63291c26488413c4d7fa2aa9bbcdb03e)
函数x=φ(y)在区间I内可导且φ(y)'≠0,则函数x=φ(y)在区间I内必连续,则其反函数y=f(x)在相应区间内也连续,即当Δx→0时,Δy→0,所以
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00059010.jpg?sign=1739341336-g5CtPARRK2L0y34sfromiBSJaUe8wyWe-0-413fede74e279d85cd21df4ab916d51d)
即
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00060001.jpg?sign=1739341336-3YyjNoOqyneXt7dgKxk33PzvfzbGlkjc-0-d9894245a332522912b849467278f57b)
简言之,某函数反函数的导数等于该函数导数的倒数.
例6 求函数y=arcsinx和y=arctanx的导数.
解 因为y=arcsinx(-1<x<1)的反函数为,它们在各自的定义区间内单调、可导,且有
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00060004.jpg?sign=1739341336-z6t0yk0jCSIS12EHBuVFnoZlMU4ua5FI-0-5ee121d69f0bce1e017ed234ae44f91f)
因为y=arctanx(-∞<x<+∞)的反函数为,它们在各自的定义区间内单调、可导,且有
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00060006.jpg?sign=1739341336-kvBpMDOFtdasHudklfkxG6pHDqP8hqaj-0-270938eaee0740e4c3cd0bf518522f2d)
所以
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00060007.jpg?sign=1739341336-dx79qJAxDHUhVHD36yCox3P4HbPk60Ms-0-fe6d09dcded8b9d23fbd69595404d3ff)
同理可推得
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00060008.jpg?sign=1739341336-oAOmntcgqoXFuly4oqt9HqXxOQlk1r9Y-0-28e392a37ab9e642dde50c452f71e919)
(ax)'=axlna,(ex)'=ex.
例7 求函数的导数.
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00060010.jpg?sign=1739341336-W7BzsxXY7gHbBBpGrTLuZ5QSjwZ6uHoL-0-9a9ce3a15aae8c07588e87e657f8db57)