![复旦大学数学系《数学分析》(第3版)(下册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/683/27032683/b_27032683.jpg)
11.3 名校考研真题详解
解答题
679.证明:若K(x,t)在D=[a≤x≤b,a≤t≤b]上连续,u0(x)在[a,b]上连续,且对任意x∈[a,b],令
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2062.jpg?sign=1739341239-7tSwV6itqe7jb1CoMqK2morDkeM9tzcm-0-94772b9f5bc6a23289e91cbb250eac69)
则函数列{un(x)}在[a,b]上一致收敛.[东北师范大学研]
证明:K(x,t)在闭区域D上连续,从而在D上有界,即使得对
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2064.jpg?sign=1739341239-gcMeuaGeMMQkbZ7o0oKltq95tI76qRW0-0-f3403244cfdc1120eb3b9f2e080040bb)
u0(x)在[a,b]上连续,从而在[a,b]上有界,即使得对
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2066.jpg?sign=1739341239-zKEUGEzSWfOchEe8GoJvMyVv6Pds4etP-0-bd846cfa393fbcf2bf8e008dabfcb810)
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2068.jpg?sign=1739341239-FKwxYB284TmFJ1kl8TJcFZAn2GHS3yZ8-0-9cbd0071223a4f7a467082e1f4e3bdc5)
由数学归纳法易知,由
及柯西准则知un(x)在[a,b]上一致收敛.
683.证明:在任何有穷区间上一致收敛,而在任何一点都不绝对收敛.[华中科技大学研]
证明:(1)对任何有穷区间,使得对一切x∈I有
①在I上一致收敛;
②对单调减且
,即是一致有界的.
由阿贝尔判别法知在任何有穷区间I上,级数一致收敛.
(2)对由于
收敛,
发散,故
不绝对收敛.
685.设函数f(x)在区间[a,b]上有连续的导函数及a<β<b.对于每一个自然数
定义函数
①
试证:当n→+∞时函数序列在区间[a,β]上一致收敛于f'(x).[中国科学院研]
证明:f'(x)在[a,b]上连续,从而在[a,b]上一致连续,即对对
时
对,取
,则当n>N时,对一切
由①式,
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2093.jpg?sign=1739341239-hJ3tdD61sut8G4sb95UpzzDdxP7p4lws-0-d8bbb32e1d8a63b05b54b239bdd94ae6)
所以函数列fn(x)在[a,β]上一致收敛于f'(x).
687.(1)求证:在[0,1]上处处收敛,但非一致收敛;
(2)f(x)在(-∞,+∞)内处处有任意阶导数,级数…
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2096.jpg?sign=1739341239-k6wR0pjAD5YzlAOG48yGKuDZuD75hNmj-0-041b4c9c111d1c9c12dc97a54b7f682c)
按二个方向在(-∞,+∞)内一致收敛.试求级数的和函数F(x).[同济大学研]
证明:(1)
对均收敛,所以
收敛,
当x=1时,.亦收敛.
所以在[0,1]上处处收敛.
但
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2103.jpg?sign=1739341239-htPCRfQEhwE2W8svNmLWSDwtgP7DjxdZ-0-4bdb5c4bfd4115b75280dd3662061edf)
所以在[0,1]上非一致收敛.
(2)f(x)有各阶导数,自然各阶导数都连续,该级数逐项求导之后,级数仍是它自己,因而一致收敛,满足逐项求导三条件,所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2105.jpg?sign=1739341239-91GF9cs5ano8IOtzpSBtCFNjsFq2lBgG-0-6c2b0d920639d92509824bd57934e54f)
两边同时积分得(其中c1=ec为常数),令x=0,知
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2107.jpg?sign=1739341239-G3e803copPLrOO6M7vUogAk0xSw7CANC-0-712a259797e0cd108bafe703100ea9aa)
722.写出在x=0点展开的Taylor级数的前五项系数,并指出该级数的收敛区域.[北京师范大学研]
解:令,因为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2110.jpg?sign=1739341239-rKxQe0n0MibeqalPgKTxS3Mffyr5zpA8-0-586fcf1b269c66ba99587a868dcf1ba8)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2111.jpg?sign=1739341239-OzxgFW1KjsDmzzq1EiUT9pK7MFefa2Tw-0-c1528f24c4095b62ed2fac60778ae1d1)
则在x=0点展开的泰勒级数前5项为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2113.jpg?sign=1739341239-e3RGxxMn1YENijRpZHXdeWwHEWeVGXBY-0-1c6d6ea70d915e847c76685772459ee6)
另外,由于在(-∞,+∞)收敛,因此该级数的收敛域为(-∞,+∞).
729.利用数项级数计算积分
[厦门大学研]
解:注意到
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2118.jpg?sign=1739341239-aD3JuDlCRxcuBuaSrdzI8cvWVCRu6N44-0-5a1cd6122ecf1a299de9eea1ef0bee77)
748.判断级数的收敛性并给出证明.[北京大学研]
解:由于故
而
∴由归结原则
因此由正项级数的比较判别法收敛,从而
也收敛.
1.求的收敛域.[大连理工大学2006研]
解:因为,当x=1时,
不趋于0,所以当
x=1时该级数发散.当x=-1时,
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2129.jpg?sign=1739341239-Jk8hemQa7R2e26OxayuhWufRLZdcPUX8-0-83ab3ab9f55194d599dd36fbbcda29c2)
为交错级数,所以收敛.故的收敛域为[-1,1).
1.求幂级数的收敛域及和函数.[西安电子科技大学研]
解:由于,所以收敛半径为
,易知其收敛域为
.记
,则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2136.jpg?sign=1739341239-5rP1OLklDssLNAFjIPsXTPqqNt8wLAxB-0-1cde12894e343c006258b5ae2f736409)
所以.
1.求幂级数的收敛域及和函数.[华南理工大学2006研]
解:因为,所以R=1.当R=±1时,
均收敛,所以[-1,1]为其收敛域,在[-1,1]内可以逐项求导、逐项求积分,因此
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2141.jpg?sign=1739341239-2tXWbaznDUsqGClgXh27JhFBFBpwaaUK-0-9b5e320be098400b34e9a36df2eaa34e)
令,则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2143.jpg?sign=1739341239-Fm2pOT3uLYOBY8Fo5HslcdNEJ6EUFk3A-0-5fc58b2c2d5f553d151c7197bddf4d10)
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2144.jpg?sign=1739341239-MBTxoFYyibowUE2iWYjxgO6ZeULzzEok-0-97235adbe4dcf9dc4efff74cc7c8dc45)
1.求的Mac1aurin级数展开式.[华东师范大学2006研]
解:由于,所以
,从而
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2148.jpg?sign=1739341239-0f566okeC9CChkNtaAg81d3qOGouALDO-0-900b5418d33762f8097a691b64685398)
1.求在x=0处的幂级数展开式及收敛半径.[中南大学研]
解:由,有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2151.jpg?sign=1739341239-ZkR2IjEGimhXQRgRp3CEoUpsF2iQ3Se7-0-07e8bc21e2ce13b8ee3c10452ae5cc96)
易知其收敛半径.
1.证明:当时,
在(-∞,+∞)上一致收敛.[东北大学研]
证明:易知
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2155.jpg?sign=1739341239-gHmk2eMoO52AmuXKAYgS0vsqYnyCTa8f-0-66e31316cbe787fde5d2f37cecf054e0)
令,由于
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2157.jpg?sign=1739341239-OMkeCZVTtWdEHfnaHWbKOr91vthxoVVq-0-73bb72df678f8159d0ec38e9cda2f274)
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2158.jpg?sign=1739341239-OBLFdQ6b2yr9TZTH3PICerDzIEzEidwg-0-a871a13d3f4ae46b85f6564d7cbc16ba)
故
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2159.jpg?sign=1739341239-XQ6v7a0PpYb86zf7bnzUAS1C1vVDsspe-0-b33162df2b0a51c07b21fd1b52381a10)
所以在(-∞,+∞)上一致收敛.
1.设f(x)在区间[a,b]上连续,f(x)>0.证明:函数列在[a,b]上一致收敛于1.[华东师范大学研]
证明:因为f(x)在区间[a,b]上连续,所以存在,使得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2163.jpg?sign=1739341239-2QOYzThKTQpDDRWb4qavKgtLHjlCkpSC-0-aa303a4e0e86ee8a0ebb1e2c4d42762e)
,从而有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2164.jpg?sign=1739341239-62fVoUXBhzTMgn6HWTUEm4uKHOencFmT-0-fb83b841e6cf143c7cd8d4395f42d638)
因为,所以对任意的
,存在N>0,使得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2167.jpg?sign=1739341239-IWqExEcPzGx4hwVM6TkPerqWGusSmRxx-0-77cf646adfbffec14d3b9fbd0a487a58)
从而有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2168.jpg?sign=1739341239-k5ZSvfKkBwvJhM6RNCIqOjv3m50CAZW2-0-ddbdf13711b88d2e120922d8675774af)
即函数列在[a,b]上一致收敛于1.
1.设函数un(x)在闭区间[a,b]上连续(n=1,2,3,…),级数在开区间(a,b)内一致收敛.证明:函数
在闭区间[a,b]上一致连续.[北京交通大学2006研、深圳大学2006研]
证明:由于级数在开区间(a,b)内一致收敛,所以对任意的
,存在N>0,使得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2174.jpg?sign=1739341239-OL774ypNrkiXjbnAWomEeWvSdJh6oI7Q-0-ea2cc683247041252126d39dd102b8ab)
由于函数在闭区间[a,b]上连续(n=1,2,3,…),在上式中分别令
有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2177.jpg?sign=1739341239-4ceUTtjrk0Az9u3sWisI5Fnp3H4beUuF-0-cc44b4680972bc4698774f711a3f2fc5)
从而有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2178.jpg?sign=1739341239-2MKBFL5roYyNz45R9z3vA164hN1ILZNj-0-364d6029a8c7443aeebb14620ac8211a)
即在闭区间[a,b]上一致收敛.故函数
在闭区间[a,b]上一致连续.
1.设函数f(x)在(-∞,+∞)上有任意阶导数,且导数函数列在(-∞,+∞)上一致收敛于
.证明:
[南开大学2006研]
证明:由于在(-∞,+∞)上一致收敛于φ(x),从而
即
在(-∞,+∞)上一致收敛,由一致收敛函数列的可微性质得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2187.jpg?sign=1739341239-HVIPOoNlwV7qixQqvyjf9vT7BKMKlHRr-0-69555b9bc44315f54a3bcac757e578b1)
于是.又因为φ(0)=1,所以C=1,故
1.设,计算积分
[江苏大学2006研]
解:由于,又
收敛,故由Weierstrass判别法知
在
(-∞,+∞)上一致收敛.从而由一致收敛函数项级数的可积性知
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2195.jpg?sign=1739341239-11YVertMmyWD5QQVbEV1kyS50OMzsWF3-0-3428343d7294f963b431082f0d608d9e)