![五年制高职数学(第三册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/610/31729610/b_31729610.jpg)
上QQ阅读APP看书,第一时间看更新
12.4 极限的运算法则
本节重点知识:
1.极限的运算法则.
2.运用极限的运算法则求函数极限.
定理 如果当x→x0时f(x)和g(x)的极限都存在,且,
,则
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00044005.jpg?sign=1738850028-nydIIpVRg6l45tSXd8MHbFvVHabrnzn1-0-c664eac1c37c85f516a10a31ec960fb0)
例1 求下列极限:
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00044006.jpg?sign=1738850028-ALFTR02yGGzG3FuSWVHnq9Oi5i1eevt0-0-9b3ad6a72e3f9b4a7b3af8ba0be33da7)
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00044007.jpg?sign=1738850028-NptuAKQBTSmDwEMb1w6icn5dTeb0IhrE-0-4c0e7057b49ee984c2ef7fecee173f8a)
例2 求(1); (2)
.
解 (1)x→3时,分子、分母的极限都是零,所以商的极限的运算法则不能应用,但是
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00045003.jpg?sign=1738850028-CKvi77FnUJOv1ZOrb36hpNrggsoIAsV0-0-e79d273497ecad2b9bcf17b7f5b4be2b)
分子、分母有公因式(x-3),在求x→3的极限时,要求x≠3,所以x-3≠0,
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00045004.jpg?sign=1738850028-rjlud4efcXGl9HcjQr6i1wfjrObELzTJ-0-02ef0503451b1b77c8aae7f626584e17)
(2)这个极限与(1)类似,x→0时,分子、分母的极限都是零,所以商的极限的运算法则不能应用,但是分母有理化之后
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00045005.jpg?sign=1738850028-3O0cWfhc2crHGuRvGedEbwy5Ju57F6dW-0-2c28e09c9599f64260787619a38d89e8)
分子、分母有公因式x,求x→0的极限时,要求x≠0,从而
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00045006.jpg?sign=1738850028-YZ8jv8sAhiWjZzf615US05h6gIh7YyzW-0-d88bd158a28e2781d125727bd618e3d1)
例3 求.
解 x→1时,分母的极限为零,分子的极限是-1,商的极限的运算法则不能应用,但其倒数的极限
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00045008.jpg?sign=1738850028-birjpmXRMYevrSHf3J1FA5yLkWhKf4j5-0-19ade647e962ed9e0a7bf711376bfe13)
利用无穷小与无穷大的关系可知 .
想一想
如下写法是否正确?
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00045010.jpg?sign=1738850028-TNeLn6oVlvQs4DfFOz5FMZ9yayO9n0UY-0-a1d521100881f1d859e9cd3f6581c7b8)
例4 求下列极限:
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00045011.jpg?sign=1738850028-x4ecjfkoXsdw5NTNPTyPP0KSE1hk1Zgi-0-9a8ffd8332a6190ba1f2633ba1049790)
解 (1)先用x3去除分子及分母,然后取极限
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00045012.jpg?sign=1738850028-DgUKxYNrT3umvJ6sZLqg7dZp1191aHvo-0-58e3ecbf0d253ef69049dd4b28893222)
(2)先用x3去除分子及分母,然后取极限
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00046001.jpg?sign=1738850028-tMKoc6JhAt8TLIUpK31iKBWTpiVtnlK1-0-991d0707fc164cbce11622ccaf4e2645)
(3)由(2)可知
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00046002.jpg?sign=1738850028-V1HO6EJjPTkwvy8yekIVoiOMfHp9XDCZ-0-1df0616684c1f2b25615259b1f794c91)
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00046003.jpg?sign=1738850028-9PxKmvFWlgshA7dm2ZssMCPsUftMSbJT-0-453f4298eaf6c615bb356b247cf81503)
讨论:有理函数怎样求极限?能得出那些结果?写出你的结论
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00046005.jpg?sign=1738850028-TFclH54A1gRdhM6ugpqbp2bgUqQVSr2y-0-fb6aa35d0d3d1ed2115538dc4f33314b)
例5 求.
解 当x→∞时,分子及分母的极限都不存在,故商的极限的运算法则不能应用,因为,而
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00046008.jpg?sign=1738850028-tJMtFqyhWR4oeVSz5XFZ4eDpPXQOcZAt-0-3abad4e95b66677ba8f03d11f616a5f6)
利用有界函数与无穷小的乘积仍为无穷小,得 .
注意
(1)运用极限运算法则时,只有各项极限都存在(除式还要分母不为零)才适用;
(2)如果所求极限呈现 或
等形式,不能直接用极限运算法则,必须先对原式进行恒等变形(约分、通分、有理化、变量代换等),然后再求极限;
(3)利用无穷小的性质以及无穷小与无穷大的关系求极限.
想一想
如下写法是否正确?
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00046012.jpg?sign=1738850028-H6m2ZdHijkfk4h33azmaIYJj84sdM5Nd-0-a6e693468c14338d1fcf8228141cdf11)
例6 求,设函数
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00047002.jpg?sign=1738850028-cA6frYtEWxqql6btkrzRBr4M7GGM6U3g-0-b944e190d1af3cde6e391407d0b32dd1)
解 求x→1的极限时,要求x≠1,所以
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00047003.jpg?sign=1738850028-a2FjQQsedONfuJhslj6pShNVOITgYUjF-0-295ec0b414622ad4cf960d6ab03e60c7)
例7 如果,求
解 因为当x>4时,,所以
;而当x<4时,f(x)=8-2x,所以
;左、右极限存在且相等,所以
.
例8 求.
解 ,
,左、右极限不相等,所以
不存在.