![Hands-On Machine Learning with Microsoft Excel 2019](https://wfqqreader-1252317822.image.myqcloud.com/cover/668/36698668/b_36698668.jpg)
Entropy calculation
The frequency table for the combination Outlook-Train outside is as follows:
![](https://epubservercos.yuewen.com/33541B/19470379501493906/epubprivate/OEBPS/Images/7.jpg?sign=1739282624-a7UFq9TtspGufgx1pC0jMIpTupmVQ5CK-0-ded4bcda0f06680e20566f6621564edb)
Using these values, we get the entropy of two variables, as shown here in detail:
![](https://epubservercos.yuewen.com/33541B/19470379501493906/epubprivate/OEBPS/Images/376672c9-2d09-4c28-8fab-67e9601dc316.png?sign=1739282624-ulNRLo7iMrFsIGtBaC8B0AtmAUIcN3EI-0-a40807863cab4238495f6bed87beb189)
p(Sunny).S(Sunny)+p(Overcast).S(Overcast)+p(Rainy)*S(Rainy)=
5/14*(-3/5*log2(3/5)-2/5*log2(2/5)) +
4/14*(-4/4*log2(4/4)-0/4*log2(0/4))+
5/14*(-2/5*log2(2/5)-3/5*log2(3/5))=
0.693
Here, p(Sunny) = (#Yes+#No)/Total entries = (2+3)/14, p(Overcast) = (#Yes+#No)/Total entries = (4+0)/14, and p(Rainy) = (#Yes+#No)/Total entries = (2+3)/14. The entropy values S(v) are calculated using the corresponding probabilities, that is, #Yes or #No over the total #Yes+#No.
The frequency table for the combination Temperature-Train outside is as follows:
![](https://epubservercos.yuewen.com/33541B/19470379501493906/epubprivate/OEBPS/Images/8.jpg?sign=1739282624-b4K9RH6PwkV03u1bjM28bNxTjxuevEyr-0-00f243ba6bd5755e16c601d7717149f1)
Using these values and an analogous calculation, the entropy is shown in detail here:
![](https://epubservercos.yuewen.com/33541B/19470379501493906/epubprivate/OEBPS/Images/eff7388b-ac6d-4b8c-95fa-5d057e97fd1d.png?sign=1739282624-iaU3LISKYrHu0rv5vfnqoRUJMW2XuP0u-0-4d8022e2964c93851d504ed2581b89c7)
p(Hot).S(Hot)+p(Mild).S(Mild)+p(Cool)*S(Cool)=
4/14*(-2/4*log2(2/4)-2/4*log2(2/4)) +
6/14*(-4/6*log2(4/6)-2/6*log2(2/6))+
4/14*(-3/4*log2(3/4)-1/4*log2(1/4)) =
0,911
The frequency table for the combination Humidity-Train outside is as follows:
![](https://epubservercos.yuewen.com/33541B/19470379501493906/epubprivate/OEBPS/Images/9.jpg?sign=1739282624-3dUwZOF228JaX8Kz704aEJbnRkPk7GYg-0-8a3e2d6dc68b50224b5143c9a9d96a69)
Using these values, we get the entropy as follows:
![](https://epubservercos.yuewen.com/33541B/19470379501493906/epubprivate/OEBPS/Images/91f2ee7e-5fee-497d-8b8a-3a42b9d21d98.png?sign=1739282624-w2GKvJUgb4fKF5Q5F4LWox8oXy9CvYhC-0-022e1d47565e688098ee94551fa162e7)
p(High).S(High)+p(Normal).S(Normal)=
7/14*(-3/7*log2(3/7)-4/7*log2(4/7)) +
7/14*(-6/7*log2(6/7)-1/7*log2(1/7))=
0,788
The frequency table for the combination Windy-Train outside is as follows:
![](https://epubservercos.yuewen.com/33541B/19470379501493906/epubprivate/OEBPS/Images/10.jpg?sign=1739282624-0r8gYegM5SCiUfSZm5Mfrbc9pWlBr2L3-0-3cd8660167af0e3dc568badcba448951)
Using these values, we get the entropy as follows:
![](https://epubservercos.yuewen.com/33541B/19470379501493906/epubprivate/OEBPS/Images/ae116dfd-9968-47ba-ad17-fbd5ec08073e.png?sign=1739282624-HisCsXDrIIpOYhpREeWbMEKmdfaG0KN8-0-60af26e72ccdbd9c9f7f66506c53f90a)
p(True).S(True)+p(False).S(False)=
8/14*(-6/8*log2(6/8)-2/8*log2(2/8)) +
6/14*(-3/6*log2(3/6)-3/6*log2(3/6))
=0,892