![无刷双馈感应电机高性能控制技术](https://wfqqreader-1252317822.image.myqcloud.com/cover/38/36862038/b_36862038.jpg)
上QQ阅读APP看书,第一时间看更新
2.5.4 T型稳态模型
鉴于Π型稳态模型和T型稳态模型的缺陷,本节又介绍了一种T型稳态模型,该模型结构与常规异步电机的稳态模型结构类似,这为后续的BDFIG独立发电系统的性能分析提供了一条新的途径。
为了方便T型稳态模型的推导,首先将图2.5所示的 Π型稳态模型用更简洁的方式来表示,如图2.7所示。其中Zσ1、Zσr、Zσ2、Zm1、Zm2分别为
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/38_02.jpg?sign=1738838862-Rx22xqOyX3Jynk9f5kHkyfcjzInYoR7Y-0-e3aa6875b3b956b59732529b4529ef39)
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/38_03.jpg?sign=1738838862-PGeo8iqRjCEV0wgV69lCOgP3qaOC3L5x-0-c2a3008101df2594fb429176aca17458)
图2.6 BDFIG的内核稳态模型
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/38_04.jpg?sign=1738838862-4RPbtqktLWi83CuhpeXSQdPa4hHMAIip-0-45521638f849ccc8f29d084132a395bd)
图2.7 BDFIG的 Π 型稳态模型的简化表达
图2.7所示的Π型稳态模型实际上是一个无源线性二端口网络,根据参考文献[8],可将BDFM的Π型稳态模型的外部特性用下述方程来描述
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/38_05.jpg?sign=1738838862-W16CjZGp63mtPf5RTsTRxdy5j14entQu-0-65566cb707b273bc33af9ba1d9380748)
式中,Z11、Z12、Z21和Z22称为二端口网络的开路阻抗参数,其计算方法为[7]
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/39_01.jpg?sign=1738838862-oe92IB00WGvPsZHko5eiaxzC7D3u5js0-0-03bd4d3ef6b5059caa02e04c99756f6b)
任何给定的无源线性二端口网络均可等效变换为如图2.8所示的由3个阻抗组成的T型稳态模型,接下来确定该模型中各个阻抗的参数。
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/39_02.jpg?sign=1738838862-aIzYMN1V1WZMvGt1S1pnsReMwHYO1ghX-0-0747d299e06c154c536bccf1abef276e)
图2.8 BDFIG的T型稳态模型
要确定图2.8所示的T型稳态模型中Z1、Z2和Zm的值,可先写出如下所示的回路电流方程
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/39_03.jpg?sign=1738838862-z33oDktyZtLzXngxx19iGIGUNjJ3GQFV-0-f0d0bc2cefceb7b181d1288e7d7c4afc)
比较式(2-84)与式(2-85)可知,Z12=Z21,于是可以将式(2-82)改写为
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/39_04.jpg?sign=1738838862-khOH1cFRtwExsObecYaDsG5V0hYcfXUP-0-52a945c2197173ee1d3599ff2a8d5e8e)
再比较式(2-87)与式(2-88)可得
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/39_05.jpg?sign=1738838862-zB9GCyVsDiV7iPmS1mS3JA81ABpAwEcI-0-7cf6a485f3235bd68bac60721fd1f7b2)
将式(2-81)与式(2-83)~(2-86)代入式(2-89),可得图2.8中的阻抗Z1、Z2和Zm的表达式分别为
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/39_06.jpg?sign=1738838862-6SGtXcW1M27Mljo44eX7RTAILGi9oMjG-0-3f6ac4639d91debf910a1c91e68e8c4f)
为了保证BDFIG的稳定运行,转差s1的值应远大于0[8]。于是,在忽略转子电阻的情况下,Z1、Z2和Zm中的
项也可以被忽略。此时,Z1、Z2和Zm的表达式可以分别简化为
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/39_09.jpg?sign=1738838862-4pWoAhel4PSjcPPCXadOigQ9Qls1IrAW-0-140a67857146705079d964fc75967262)
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/40_01.jpg?sign=1738838862-MZk7hL8b7Hr0TUihdb8Bsa77k2dEvULq-0-bb2dd886a0a492562e00fbed47a7f853)
式中,。
根据式(2-87),将PW的相电压和相电流作为输入变量,CW的相电压和相电流作为输出变量,则图2.8中的T型稳态模型可用式(2-96)所示的矩阵方程来描述:
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/40_03.jpg?sign=1738838862-oPdJg6OGov74X7NXU7aBKKRkUadF7FrN-0-6f2cb81ab02bd19c3453cf82be84bcb3)