联邦学习:算法详解与系统实现
上QQ阅读APP看书,第一时间看更新

作者简介

薄列峰

京东科技集团副总裁、硅谷研发部负责人。曾担任包括NeurIPS、CVPR、ICCV、ECCV、AAAI、SDM等在内的多个顶级人工智能会议程序委员会委员。在国际顶级会议和期刊上合计发表论文80余篇,论文被引用10186次,H指数44。其博士学位论文荣获国内百篇优秀博士论文奖,RGB-D物体识别论文荣获机器人领域学术会议ICRA最佳计算机视觉论文奖。

黄恒

大数据、机器学习、人工智能等领域的国际学术带头人,美国匹兹堡大学电子及计算机工程系杰出讲座终身教授,AIMBE Fellow。作为会议程序主席或主席团成员,组织了超过20个国际学术会议。在国际顶级会议和期刊上发表了超过220篇文章,文章引用超过13000次,作为项目负责人领导了超过20个国际领先的科研项目。

顾松庠

计算机博士,京东科技联邦学习部负责人。对机器学习算法和大规模并行系统有深入研究,曾在美国FDA任高级机器学习及统计科学家,建设放射成像医疗仪器的评价体系;先后加入WalmartLabs和LinkedIn公司,负责机器学习平台架构设计。2018年加入京东科技,并带领多个团队先后建设了智能客服、知识图谱和联邦学习系统。

陈彦卿

京东技术总监,毕业于北京大学,并在纽约州立大学石溪分校获得计算机博士学位。作为排头兵投身联邦学习领域,探究加密信息的合理应用,坚信面向隐私保护的机器学习技术将引领未来。